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The same relations are also valid for a metallic inner cylinder and
the H-wave polarization, as well as for a dielectric inner cylinder
and both polarizations, with the changes which are referred to in the
relative sections.
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Enhancements of the Spectral-Domain Approach
for Analysis of Microstrip Y-Junction

B. L. Ooi, M. S. Leong, P. S. Kooi, and T. S. Yeo

Abstract—Some enhancements of the spectral-domain approach in
the polar coordinate are described. A simple and efficient algorithm is
devised to numerically evaluate the contribution of the oscillatory tail of
the two-dimensional (2-D) Sommerfeld integral. For the first time, four
new vectorized basis functions are proposed. Good agreement is obtained
between the simulated results and the measured data for a microstrip
Y-junction in the 4–12 GHz range.

Index Terms—Microstrip, numerical integration, planar transmission
lines, spectral-domain method.

I. INTRODUCTION

The numerical computation of the Sommerfeld integrals in the
polar coordinate has been dealt with by many authors [1], [2].
In 1992, Dvoraket al. [1], [2] have developed some methods to
compute the two-dimensional (2-D) Sommerfeld integrals in the
polar coordinate. Their methods have certain drawbacks in that: 1)
there is a large amount of analytical manipulation that ought to
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be done before the tails of the 2-D Sommerfeld integrals can be
evaluated and 2) the evaluation of the tails of the 2-D Sommerfeld
integrals often involves tedious and complicated functions which
are not applicable for any arbitrary basis functions. Although the
fast Fourier transform (FFT) algorithm [3] can be used to improve
the convergence of the Sommerfeld integrals for the modeling of
nonrectangular discontinuity, the FFT algorithm fails to achieve good
solution because the discretization scheme cannot assure that all
points are located in the cross-points of a regular grid. Moreover,
the modeling of a nonrectangular discontinuity with rectangular cells
is ineffective because the use of a large number of elements is
necessary.

Of course, the Rao’s vector basis function [4] can always be
used to eliminate the staircase approximation. However, this basis
function is not very competitive as compared to the rectangular basis
function and should be used only if it is absolutely necessary. In 1993,
Eibert [6] provided an enhancement on Rautio’s basis function [5] by
using a new expansion function consisting of one triangle and two
adjacent rectangles with arbitrary orientation within the plane of the
circuit. In his method, a removable singularity, which requires extra
analytical manipulations, appears in the Fourier transform of a linear
distribution with triangular support [7] when the polar transform
vector � = k2x + k2y is perpendicular or parallel to any edge of
the triangle [8].

The purpose of this paper is to introduce some enhancements
of the spectral-domain approach and to use four new vectorized
expansion functions based on an extension on Eibert’s work, for the
analysis of an arbitrarily angled microstrip Y-junction. This paper
further describes a new general algorithm for evaluating the 2-D polar
spectral integrals which arise. Finally, some numerical results will be
presented and discussed.

II. GENERAL FORMULATIONS

An arbitrarily angled microstrip Y-junction consisting of a thick-
nessh and a lossless nonmagnetic relative dielectric permittivity"r

is shown in Fig. 1. The global coordinate system with theu-direction
being along the arm and thev-direction being orthogonal to the
u-direction, is also presented in Fig. 1.

In our analysis, four types of current expansion functions are
utilized in the method. They are the arbitrarily oriented pseudo-
exponential window traveling wave (PEW) functions, the vectorized
roof-top subdomain functions (T), the arbitrarily oriented rectangular
subdomain functions (R) and the vectorized triangular–rectangular
subdomain functions (RT).

A. Arbitrarily Oriented Pseudo-Exponential
Window Traveling Wave (PEW)

This current expansion function is an extension of Cicchetti’s work
[9] to the case of arbitrary orientation. The Fourier transforms of the
basis functions can be obtained by application of linear coordinate
transformations and shifting property of Fourier transform to the
direct solutions of the Fourier integrals [9] for the corresponding
functions which are rotated and shifted to an appropriate location
within the xy-plane. The PEW, which is used to simulate the
incoming and outgoing currents on the feedlines, allows us to
extract the scattering parameters without any de-embedding since
the scattering parameters are embedded in the coefficients of the
traveling wave functions.
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Fig. 1. A cross-sectional view of a microstrip Y-junction with two of the basis functions—namely, the vectorized roof-top basis function and the
triangular-rectangular basis function. As in [8], the right-hand rule is adopted in the derivation of both basis functions, and the interior edge of the
roof-top function is not a constant as compared to [4].

B. Vectorized Roof-Top Subdomain Functions (T)

Together with [8], we expand the current into the transverse and
normal components along the edges of the triangle, and by combining
the appropriate normal current on one side with the neighboring cell,
the resultant Fourier transform of our new expression is shown in
(1) at the bottom of the page, whereIj with j = k; H is the vector
along edgek or H (see Fig. 1), respectively,�k; k is the unknown
normal current component along edgek to edge(k+1), respectively,
rk+1is the position vector of the(k + 1)th vertex,A is the area of

the triangle, the symbol dot and cross denote, respectively, the dot
and vector product,� is the transform vector, andjn denotes the
spherical Bessel function of the first kind of ordern. This resultant
expansion function is mainly used in the overlap of the two arms of
the Y-junction.

C. Arbitrarily Oriented Rectangular Subdomain Functions (R)

The mathematical expressions of the Fourier transforms of the
u-direction and thev-direction of the arbitrarily oriented rectangular
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(a) (b)

Fig. 2. Partitioning of the(�; �) space in new scheme for numerical integration. (a)� is the width of the rectangular subdomain function. (b) Numerical
scheme for triangular and PEW testing reaction.
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where � = tan�1 (ky=kx), ke is a constant used to describe the
shape of the piecewise sinusoidal function and must be less than
�=2d to avoid a dip at the center,d is longitudinal length of the
basis function, andb is the width of the basis function. This expansion
function is utilized in the vicinity of the microstrip transition on the
three feedlines. The overlap on the feedline between the area covered
by this expansion functions and that of the PEW’s accounts for the
higher order modes in the vicinity of the discontinuities.

D. Vectorized Triangular–Rectangular Subdomain Functions (RT)

Using the same approach as in Section II-B, the Fourier transform
of the vectorized triangular–rectangular subdomain function (See
Fig. 1) is given as
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Îk � Îk+2 � Îk
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where d is the longitudinal length of the ramp function,b is the
horizontal width of the ramp function andrk+1 is the position vector
of the(k+1) edge [8]. This basis function is applied consecutively at
the junction of each feedline. For each feedline, two basis functions
of opposite peak are assigned at the junction. Hence, fewer basis
functions are required for the description of the current.

III. N UMERICAL INTEGRATION

The polar representation of the electric-field integral equation
(EFIE) is solved by imposing zero tangential electric field on the
microstrip surface(z = 0) and using the Galerkin’s method. With
the above current basis functions, we obtained a matrix given as

[Z][I] = [V ] (4)

where the elements of[Zij ] are the double integral reaction between
the basis functioni and the testing functionj. The double infinite
integration in each matrix element is carried out numerically. For the
integration with respect to�, the infinite integration is divided into
three regions, namely:

1) 0 < � � ko;
2) ko < � < k2;
3) � � k2.

This partitioning is essential so as to separately cater for the poles
that are found in Region 2.

In the interval0 < � � k0 and 0 � � � 2�, the impedance
matrix elements[ZRR] along thex- or y-axis are smoothed with
the change of variable� = cos t. As for the reaction between
the u-direction and either thex- or y-direction, and the reaction
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TABLE I
NUMERICAL RESULTS OBTAINED BASED ON THE NEW SCHEME AS ILLUSTRATED IN FIG. 2(a). THIS IS EVALUATED

FOR THE CASE WHEN "r = 2:32 AND h = 1:56e�3m WITH THE BASIS-TESTING SEPARATION AT 1:5�g

between thev-direction and either thex- or y-direction,� = sin t

should be used instead. For the mutual reaction between theu

itself or v itself, � = cosh t has to be used. These transformations
are used to smoothen the infinite derivative of the Green func-

tions. Since the variation along this region is slow as compared
to Regions 2 and 3, a simple 2-D Gaussian quadrature of 64
points is sufficient to span through the whole spectrum of the
frequency range.
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Fig. 3. Comparison ofS�v measured data [13] (symbols square, diamond, asterisk, and triangle) and simulated results (dash and solid lines) from the
new numerical scheme for various Y-junction angles
.

In the intervalko < � < k2 and 0 � � � 2�, the singularity is
extracted using the method proposed in [11]. With the substitution
� = cosh t and the methods proposed in [11], one can integrate the
smoother integrand with a 64-point Gaussian quadrature for both the
� and � variables.

The integrand in the interval� 2 [k2; 1] is a slowly converging
oscillating function over a semi-infinite interval. The integrand in the
� direction is also an oscillating function of frequency proportional
to �. Most methods (as proposed in the literature) have omitted this
oscillation of the integrand in the� direction. In 1994, Cai [12] has
suggested a new method to evaluate this 2-D spectral integral. In his
method, the integrand region in the� direction is divided into several
subregions:� = 0; �o; 2�o; 3�o; � � � ; n�o. Within each subregion
between(n�1)�o andn�o, it is further divided inton sub-subregions
in the� direction, wheren = 1; 2; 3; � � �. Finally, (k�m) sampling
points are subsequently applied in each sub-subregion.

Since the integrand is a decaying function, this partition is not
efficient. We have instead adopted that as illustrated in Fig. 2(a)
for the rectangular testing reaction and Fig. 2(b) for the triangular
and PEW testing reaction. There,� is the width of the rectangular
subdomain functions. From the impedance matrix, it is noted that the
integrand of the off-diagonal matrix elements becomes more highly
oscillatory as the separation distance between the basis function
and testing function increases. Also, as the frequency increases,
the integrand of the matrix elements becomes more oscillatory.
Thus, if a dedicated quadrature is devised to accurately solve the
impedance matrix elements located furthest from the diagonal and
at the highest frequency of interest, sayfmax, it should equally be
able to accurately evaluate the remaining matrix elements at any
frequencies belowfmax. This implemented numerical scheme results
in a major improvement in the computation time as the same set of
dedicated weights and abscissas can be used over and over again for
the same type of integrand. In our approach, the 64-point Simpson’s
method is selected. The infinite integral is truncated at a large distance
of approximately(k2 + 12k0) away, where its contribution to the
solution of the integrand is relatively insignificant.

IV. RESULTS AND DISCUSSIONS

Table I presents a typical set of numerical results of the matrix
element [ZRR] in (4) for the interval � 2 [k2; 8�=�] under
the new scheme. The depicted range of integration is only for a
quadrant of Fig. 2(a). From Table I, a 64-point Simpson’s formula
is observed to be the most appropriate one to cater for the whole
spectrum of frequency as the numerical results obtained at both
2 and 20 GHz converge. For instance, for a range of(�; �) of
([2�=�; 4�=�]; [0:8; �=2]), the numerical results for[ZRR] have
converged to within three significant digits as the number of points
taken in (�; �) increases from (16, 16) to (64, 64). Similar trends
have also been noted for the other types of integrands, but these will
not be reproduced here for brevity.

Fig. 3 presents the magnitude of the scattering parametersS�v of
two symmetric Y-junctions as a function of frequency in the range
4–12 GHz, for Y-junction angles
 of 100, 200, and 140�. They are
namely for: 1) Case 1:w1 = w2 = w3 = 0:456 cm and 2) Case
2: w1 = 0:456 cm, w2 = w3 = 0:127 cm. Excellent agreement
between the measured data obtained from [13] (denoted as symbols)
and the simulated results (dashed and solid lines) is noted. Close
agreement has also been obtained for a known T-junction structure,
but due to space constraints it is not reproduced here.

V. CONCLUSION

For the first time, four new vectorized basis functions are formu-
lated and applied in the spectral-domain analysis of a Y-junction.
A simple and efficient algorithm is also proposed to solve the 2-D
Sommerfeld integral. Good agreement between the numerical results
and the measured data found in [13] has been obtained.
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Analyticity of Electromagnetic Fields in Regions
Characterized by Analytic Dielectric

Parameters and Analytic Sources

S. Caorsi and M. Raffetto

Abstract—In this paper, the analyticity of time-harmonic electromag-
netic fields in regions characterized by analytic dielectric parameters and
analytic sources is proven.

Index Terms—Electromagnetic theory, theoretical electromagnetics.

I. INTRODUCTION

The knowledge of the analytic behavior of the electromagnetic field
is of fundamental importance for the solutions of some theoretical
electromagnetic problems—typically, uniqueness problems. Thus, for
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example, M̈uller [1] proved the uniqueness of the solutions of some
boundary value problems (e.g., Theorem 34) and the uniqueness of
the solutions of some scattering problems (e.g., Theorem 61) by using
the analyticity of the electromagnetic field in any source-free and
homogeneous region. Moreover, Caorsi and Raffetto [2] proved an
extension of the classical uniqueness theorem [3] for time-harmonic
electromagnetic boundary value problems by using a result (proved
by Müller) based again on the analyticity of the electromagnetic field
in any source-free and homogeneous region.

It is important to note that the indicated applications of the
analyticity of the electromagnetic field are restricted to homogeneous
dielectric materials. However, many problems of physical interest,
such as the spherical Luneberg lens problem [4], [5], or the study
of the propagation along the old graded index optical fibers, or
the reflection of electromagnetic waves from continuously stratified
media [6], or even the theory of Maxwell’s “fish-eyes” lens [4],
involve materials with continuously varying dielectric properties.

Consequently, it would be important to generalize the indicated
result of analyticity to “analytically inhomogeneous” materials, i.e.,
to materials having (nonconstant) analytic dielectric parameters. For
example, this generalization could allow further extensions of the
uniqueness theorem for time-harmonic electromagnetic boundary
value problems (i.e., to cases involving dielectric materials which
are lossy in a part of the region of interest and “analytically inhomo-
geneous” and lossless in the rest of the region).

The goal of this paper is to move toward such a generalization of
the analytic behavior of the electromagnetic field. In particular, it will
be shown that the electromagnetic field is analytic in any open region
characterized by analytic dielectric parameters and analytic sources.

II. A RESULT ON THEANALYTICITY OF THE ELECTROMAGNETIC FIELD

In this section, we will prove our main result about the analyticity
of the electromagnetic field. It is important to note that in this paper
a scalar or vector field is called analytic in an open region
 � R3

if it is defined in
 and if it can be developed in multiple power
series in a neighborhood of every point belonging to
 [7, p. 212],
[8, p. 170]. Then, in particular, by “analyticity of the electromagnetic
field in 
,” we mean that the electric and magnetic fields can be
developed in multiple power series in a neighborhood of every point
belonging to
.

Theorem Let 
 be an open region inR3. Moreover, letE and
H be twice continuously differentiable vector fields in
 (i.e.,
E 2 [C2

(
)]
3 andH 2 [C2

(
)]
3), such that

r�E(r) = �j!�(r)H(r); in 


r�H(r) = J(r) + j!"(r)E(r); in 

(1)

where! is the angular frequency (assumed to be strictly positive),
"(r) and�(r) are complex scalar fields analytic in
, andJ(r), which
represents the source of the electromagnetic field, is a complex vector
field analytic in
.

ThenE andH are analytic vector fields in
.
Proof: By combining both equations appearing in (1), we obtain

r�
1

�(r)
r�E(r) =�j!r�H(r)

=�j!J(r) + !
2
"(r)E(r); in 
:

(2)

By using the vector identity

r� (uV) = ru�V + ur�V (3)
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