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The same relations are also valid for a metallic inner cylinder afle done before the tails of the 2-D Sommerfeld integrals can be
the H-wave polarization, as well as for a dielectric inner cylindeevaluated and 2) the evaluation of the tails of the 2-D Sommerfeld
and both polarizations, with the changes which are referred to in timegrals often involves tedious and complicated functions which
relative sections. are not applicable for any arbitrary basis functions. Although the

fast Fourier transform (FFT) algorithm [3] can be used to improve
REFERENCES the convergence of the Sommerfeld integrals for the modeling of
nonrectangular discontinuity, the FFT algorithm fails to achieve good
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eccentrically an elliptic metallic one/EEE Trans. Antennas Propagat., The purpose of this paper is to introduce some enhancements

vol. 44, pp. 757763, May 1996. of the spectral-domain approach and to use four new vectorized

expansion functions based on an extension on Eibert's work, for the
analysis of an arbitrarily angled microstrip Y-junction. This paper
further describes a new general algorithm for evaluating the 2-D polar
spectral integrals which arise. Finally, some numerical results will be
presented and discussed.

Enhancements of the Spectral-Domain Approach
for Analysis of Microstrip Y-Junction ll. GENERAL FORMULATIONS
An arbitrarily angled microstrip Y-junction consisting of a thick-
B. L. Ooi, M. S. Leong, P. S. Kooi, and T. S. Yeo nessh and a lossless nonmagnetic relative dielectric permittivity
is shown in Fig. 1. The global coordinate system with d#héirection

being along the arm and the-direction being orthogonal to the
Abstract—Some enhancements of the spectral-domain approach in ,, _direction. is also presented in Fig. 1.

the polar coordinate are described. A simple and efficient algorithm is . . .
devised to numerically evaluate the contribution of the oscillatory tail of In our analysis, four types of current expansion functions are

the two-dimensional (2-D) Sommerfeld integral. For the first time, four  Utilized in the method. They are the arbitrarily oriented pseudo-
new vectorized basis functions are proposed. Good agreement is obtainedexponential window traveling wave (PEW) functions, the vectorized

between the simulated results and the measured data for a microstrip rgof-top subdomain functions (T), the arbitrarily oriented rectangular
Y-junction in the 4-12 GHz range. subdomain functions (R) and the vectorized triangular—rectangular

Index Terms—Microstrip, numerical integration, planar transmission ~ subdomain functions (RT).
lines, spectral-domain method.

A. Arbitrarily Oriented Pseudo-Exponential
I. INTRODUCTION Window Traveling Wave (PEW)

The numerical computation of the Sommerfeld integrals in the This current expansion function is an extension of Cicchetti’'s work
polar coordinate has been dealt with by many authors [1], [ZP] to the case of arbitrary orientation. The Fourier transforms of the
In 1992, Dvoraket al. [1], [2] have developed some methods tddasis functions can be obtained by application of linear coordinate
compute the two-dimensional (2-D) Sommerfeld integrals in theansformations and shifting property of Fourier transform to the
polar coordinate. Their methods have certain drawbacks in that: diject solutions of the Fourier integrals [9] for the corresponding
there is a large amount of analytical manipulation that ought fanctions which are rotated and shifted to an appropriate location

within the zy-plane. The PEW, which is used to simulate the

Manuscript received March 8, 1996; revised June 20, 1997, incoming and outgoing currents on the feedlines, aIIow_s us_to
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Fig. 1. A cross-sectional view of a microstrip Y-junction with two of the basis functions—namely, the vectorized roof-top basis function and the
triangular-rectangular basis function. As in [8], the right-hand rule is adopted in the derivation of both basis functions, and the interior leglge of t

roof-top function is not a constant as compared to [4].

B. Vectorized Roof-Top Subdomain Functions (T) the triangle, the symbol dot and cross denote, respectively, the dot

Together with [8], we expand the current into the transverse afd Vector productj is the transform vector, angl. denotes the
normal components along the edges of the triangle, and by combinﬁﬂfer'cf’"l Besse_l functlon_ of the f|r§t kind of order This resultant
the appropriate normal current on one side with the neighboring c&iPansion function is mainly used in the overlap of the two arms of
the resultant Fourier transform of our new expression is shown fie Y-junction.

(1) at the bottom of the page, whefe with j = k, H is the vector

along edgek or H (see Fig. 1), respectivelyb; ;. is the unknown
normal current component along edgé edge(k+ 1), respectively,
Tr+1is the position vector of thék + 1)th vertex, A is the area of

C. Arbitrarily Oriented Rectangular Subdomain Functions (R)

The mathematical expressions of the Fourier transforms of the
u-direction and thes-direction of the arbitrarily oriented rectangular

Jr(X; Tht)
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Fig. 2. Partitioning of the A, #) space in new scheme for numerical integration.4a)s the width of the rectangular subdomain function. (b) Numerical
scheme for triangular and PEW testing reaction.

subdomain function are given as _ kb®y e Meon O vetsin (0]
~ 2kcej/\[cos(9+q/)1,vo+sill(9+7)uo](£ Sin v+ § cos 7) B JA cos (8 + ) sin (.k(:d)
Jlky = Sin (Fod) _ {cos (kgd).— cos [Ad sin (9 + )] }
L Jeos (ked) — cos [Ad sin (6 + )] [\ sin (64 7)) = ké\ ’
(= nereE 1o gl At
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b
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JR = "
Y sin (ked) where d is the longitudinal length of the ramp functioh, is the
, Jcos (ked) — cos [X cos (6 + ~)d] horizontal width of the ramp function ard.+ is the position vector
[A cos (8 + )2 — k2 of the (k+1) edge [8]. This basis function is applied consecutively at

) b the junction of each feedline. For each feedline, two basis functions
'bs'nc{§ A cos (6 + 7)} (2b)  of opposite peak are assigned at the junction. Hence, fewer basis
functions are required for the description of the current.
where ¢ = tan™' (k,/k.), k. is a constant used to describe the
shape of the piecewise sinusoidal function and must be less than
w/2d to avoid a dip at the center is longitudinal length of the
basis function, andl is the width of the basis function. This expansion The polar representation of the electric-field integral equation
function is utilized in the vicinity of the microstrip transition on the(EFIE) is solved by imposing zero tangential electric field on the
three feedlines. The overlap on the feedline between the area covepégrostrip surface(z = 0) and using the Galerkin’s method. With
by this expansion functions and that of the PEW’s accounts for tHee above current basis functions, we obtained a matrix given as
higher order modes in the vicinity of the discontinuities.

I1l. NUMERICAL INTEGRATION

(211 = V] @)
D. Vectorized Triangular—Rectangular Subdomain Functions (RT)

Using the same approach as in Section 1I-B, the Fourier transfokfiere the elements ¢&;;] are the double integral reaction between
of the vectorized triangular-rectangular subdomain function (S8 basis function and the testing functiori. The double infinite
Fig. 1) is given as integration in each matrix element is carried out numerically. For the
integration with respect ta, the infinite integration is divided into

X (Fr+Ty, 2 .
el v/ three regions, namely:

- B il [2xTh >
s = | T S e
Ze I X Ipqo : = RY 1) 0 < A<k
T Y (e e 2) ko <A< ks
<{z x I, + {7(% —JTk+1 3) A > ks
i T.7 This partitioning is essential so as to separately cater for the poles
2 R —1 . e In . .
e Zel, X Apjo 5 that are found in Region 2.
Al 2~ In the interval0 < A < ko and0 < ¢ < 2w, the impedance
7 Felax) i </\ °In>>} matrix elementsZ;] along thex- or y-axis are smoothed with
! 2 2 ' the change of variableée = cos t. As for the reaction between

rely the u-direction and either ther- or y-direction, and the reaction
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NUMERICAL RESULTS OBTAINED BASED ON THE NE—IV:IASB(I;HI?ENIIE AS ILLUSTRATED IN FIG. 2(a). THIS IS EVALUATED
FOR THE CASE WHEN &, = 2.32 AND h = 1.56e™>m wWITH THE BAsIS-TESTING SEPARATION AT 1.5)
Range Number of Points Result obtained at Result obtained at
(A,0) Taken in (A,0) Frequency =2 GHz Frequency= 20 GHz
2n n
(["2 "2 H" 2 D (16,16) -j5.00831276763¢-5 j9.584855433949¢-6
(32,32) j1.06831394644¢-5 j9.584855433949¢-6
(48,48) j1.07340144805¢-5 j9.723320904687¢-6
(64,64) j1.07462308335¢-5 j9.753022731345¢-6
(100,100) j1.07463183369¢-5 19.753689599759¢-6
(300,300) j1.07469298424¢-5 j9.755320357554¢-6
([55 oes . .
(32,32) -16.358854081062¢-6 -j2.020940351984e-7
(48,48) -j7.472454749057e-6 -j3.93965685655%¢-7
(64,64) -j7.483015819895¢-6 -j3.950004909307e-7
(128,128) -j7.487845355880e-6 -13.955174263660e-7
(500,500) -j7.488151004668e-6 -j3.955503329840¢-7
([-zl ‘%’],[0.5,0 s])
(16,16) -j1.613049301819¢-6 j2.172322054908e-7
(32,32) -j2.432027030572e-6 j1.797882833436¢-7
(48,48) -j2.451089240217¢-6 j1.779770447757e-7
(64,64) -j2.453757936698e-6 j1.777074872291e-7
(128,128) -j2.454823670427e-6 j1.775968884887¢-7
(500,500) -j2.454890191107¢-6 j1.775898447643¢-7
(s3]
(16,16) -14.291152099911e-6 -j1.6323213417691e-7
(32,32) -j6.415473550057¢-6 -j4.6299322161084e-7
(48,48) -j6.473871211706e-6 -j4.6805518021162¢-7
(64,64) -j6.482579412394¢-6 -14.6882622922708e-7
(128,128) -j6.486153799224¢-6 -j4.6914495093147¢-7
(500,500) -16.486381508345¢e-6 -j4.6916535009123e-7
([4_",1_"],[0,0.5]) ) )
(16,16) 33.079697153420e-7 j2.664257100184e-8
(32,32) -j2.582685177857¢e-8 -j1.88637623586¢-11
(48,48) -j2.701572983423¢-8 -j1.146286886692¢-10
(64,64) -j2.716579829537¢-8 -j1.267939671978¢-10
{500,500) -j2.722735273534¢-8 -j1.318052992510e-10
(["A—", %1], [0.5.08 ])
(16,16) -j1.024911413874e-7 -j1.2650219858427¢-8
(32,32) j3.5144340112211e-9 -j2.4108362296808¢-9
(48,48) j6.1228238905795¢e-9 -j2.1842016185366¢-9
(64,64) j6.5174842880371e-9 -j2.1502068383963¢-9
(128,128) j6.6811298931402¢-9 -j2.1361594729587¢-9
{500,500) j6.6916428415043e-9 -j2.1352592200791e-9
(551 [e3) . .
(16,16) -j2.0903686146733e-8 -j7.3137548460316¢-9
(32,32) -j4.4618064799546¢-7 -j3.9325073434912¢-8
(48,48) -j4.0634276662564¢-7 -j3.5601413830717¢-8
(64,64) -j4.0176081808443¢-7 -j3.5240859609734¢-8
(128,128) -j4.0000747231716¢-7 -j3.5105795744503¢-8
(500,500) -13.9990060951296¢-7 -j3.5097655396569¢-8
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between thes-direction and either the- or y-direction, A\ = sin ¢ tions. Since the variation along this region is slow as compared
should be used instead. For the mutual reaction betweenutheto Regions 2 and 3, a simple 2-D Gaussian quadrature of 64
itself or v itself, A = cosht has to be used. These transformationpoints is sufficient to span through the whole spectrum of the
are used to smoothen the infinite derivative of the Green funfrequency range.
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h=0.156cm
Case 1. g =232
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Case 2:
0.8 T Wy = wy =0.127cm, w, = 0.456¢cm (Simulated mag(S11))
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Fig. 3. Comparison of5,,,, measured data [13] (symbols square, diamond, asterisk, and triangle) and simulated results (dash and solid lines) from the
new numerical scheme for various Y-junction angtes

In the intervalk, < A < ky and0 < ¢ < 2, the singularity is IV. RESULTS AND DISCUSSIONS

extracted using the method proposed .in [11]. With the. substitutiongple | presents a typical set of numerical results of the matrix
A = cosh t_ and the me_zthods proposed in [_11], one can integrate tRement [Zrr] in (4) for the interval A € [k, 87/A] under
smoother |ntegrand with a 64-point Gaussian quadrature for both #8& new scheme. The depicted range of integration is only for a
A and ¢ variables. ) ) ~quadrant of Fig. 2(a). From Table |, a 64-point Simpson’s formula
The integrand in the interval € [k2, oc] is a slowly converging s opserved to be the most appropriate one to cater for the whole
oscillating function over a semi-infinite interval. The integrand in th@pectrum of frequency as the numerical results obtained at both
¢ direction is also an oscillating function of frequency proportiona znq 20 GHz converge. For instance, for a range(Xfé) of
to \ M_ost methogis (as proposed i_n th(_e literature) have_ omitted tf(i@ﬂ/&, 47 /Al [0.8, ©/2]), the numerical results fojZy ] have
oscillation of the integrand in the direction. In 1994, Cai [12] has converged to within three significant digits as the number of points
suggested a new method to evaluate this 2-D spectral integral. In fiigen in (), ¢) increases from (16, 16) to (64, 64). Similar trends
method, the integrand region in thedirection is divided into several pave also been noted for the other types of integrands, but these will
subregionsA = 0, A,, 2A,, 3A,, -+, nA,. Within each subregion 5t pe reproduced here for brevity.
.betweer('.n—ll)Ao andn,, itis further divided inton sub-subregilons Fig. 3 presents the magnitude of the scattering paramsterof
in the ¢ direction, wheren = 1, 2, 3,.--. Finally, (k x m) sampling  yyo symmetric Y-junctions as a function of frequency in the range
points are subsequently applied in each sub-subregion. 4-12 GHz, for Y-junction angles of 100, 200, and 140 They are
Since the integrand is a decaying function, this partition is n%mely for: 1) Case lw; = ws = ws = 0.456 cm and 2) Case
efficient. We have instead adopted that as illustrated in Fig. 2(@) ,,, = 0.456 cm, ws = ws = 0.127 cm. Excellent agreement
for the rectangular testing reaction and Fig. 2(b) for the triangulggtween the measured data obtained from [13] (denoted as symbols)
and PEW testing reaction. Thers, is the width of the rectangular ang the simulated results (dashed and solid lines) is noted. Close
subdomain functions. From the impedance matrix, it is noted that thgreement has also been obtained for a known T-junction structure,

integrand of the off-diagonal matrix elements becomes more highlyit que to space constraints it is not reproduced here.
oscillatory as the separation distance between the basis function

and testing function increases. Also, as the frequency increases,

the integrand of the matrix elements becomes more oscillatory. V. CONCLUSION

Thus, if a dedicated quadrature is devised to accurately solve the-or the first time, four new vectorized basis functions are formu-
impedance matrix elements located furthest from the diagonal agbg and applied in the spectral-domain analysis of a Y-junction.
at the highest frequency of interest, sy, it should equally be A simple and efficient algorithm is also proposed to solve the 2-D

able to accurately evaluate the remaining matrix elements at a§¥mmerfeld integral. Good agreement between the numerical results
frequencies belowf.. This implemented numerical scheme result§ng the measured data found in [13] has been obtained.

in a major improvement in the computation time as the same set of

dedicated weights and abscissas can be used over and over again for

the same type of integrand. In our approach, the 64-point Simpson’s REFERENCES
method is selected. The infinite integral is truncated at a large distant[:ﬁ S. L. Dvorak, “Numerical computation of 2-D Sommerfeld inte-
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a scalar or vector field is called analytic in an open rediba R?
if it is defined inQ and if it can be developed in multiple power
series in a neighborhood of every point belonging%q7, p. 212],

Analyticity of Electromagnetic Fields in Regions [8, p. 170]. Then, in particular, by “analyticity of the electromagnetic

Characterized by Analytic Dielectric field in ©,” we mean that the electric and magnetic fields can be
developed in multiple power series in a neighborhood of every point
belonging to{2.
S. Caorsi and M. Raffetto Theorem Let 2 be an open region ifz*. Moreover, letE and
H be twice continuously differentiable vector fields fn (i.e.,
E € [C*(Q)]* andH € [C*(Q)]?), such that
Abstract—In this paper, the analyticity of time-harmonic electromag- {T x E(r) = —jwu(r)H(r). in Q

Parameters and Analytic Sources

gﬁgrzyggllelljr;crgsglr)sn;r((:)r\llirr?ctenzed by analytic dielectric parameters and V x H(r) = 3(r) + jwe(r)E(r), in Q Q)
wherew is the angular frequency (assumed to be strictly positive),
e(r) andu(r) are complex scalar fields analytictih andJ(r), which
represents the source of the electromagnetic field, is a complex vector
I. INTRODUCTION field analytic in (2.
The knowledge of the analytic behavior of the electromagnetic field Then E and H are analytic vector fields ifi.

is of fundamental importance for the solutions of some theoretical Proof: By combining both equations appearing in (1), we obtain
electromagnetic problems—typically, uniqueness problems. Thus, forv r 1

pi(r)

Index Terms—Electromagnetic theory, theoretical electromagnetics.

V x E(r)} =—jwV x H(r)
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